o, ° . A ° = o -
'“ O . ° o ° °
] Ko SN =
% 2 X ® . e °
.\. O . 5 ° = n :
5 o
’ﬂn ¢ L4 2 L] O ©° ~ °
A] ° . R k
o... .l L . A ° A 0>
‘Qo'- o . 5 ° n X . n_:
‘ O S L4 e L] ° °
S . L 5 ° N . 5
" .‘.0 .. ‘ i ® . 7 ° e o
FPTOY 507 50 T X i

ucsay
der & CEO of

o o
oo.-o.a--
.

°
esssoeo e ®

csssso00 00

A“vo\... eeco0 000

Somt B (8 5

°
°

oun
Mantra Informat

Security
//mantrainfosec.com

Ion

https

https://mantrainfosec.com/
https://mantrainfosec.com/

BI0 / BALAZS BUCSAY

e Over two decades of offensive security experience
e Started learning assembly when 13 years old

e Reverse engineering software and modifying them
e 15 vyears of research and consultancy

e Previously worked at NCC Group and Vodafone

e Certifications: OSCE, OSCP, OSWP; Prev: GIAC GPEN, CREST CCT Inf
e Frequent speaker on IT-Security conferences:

= US - Washington DC, Atlanta, Honolulu

= Europe - UK, Belgium, Norway, Austria, Hungary...

= APAC - Australia, Singapore, Philippines

BI0 / BALAZS BUCSAY

e Happy to chat! Find me after the talk
e Hobbies:
= Travelling (been to 75+ countries)
= Hiking, kayaking, cycling
= [T Security
e Lovetolearnfrom others

o Twitter: @xoreipeip

e Linkedin: https://www.linkedin.com/in/bucsayb/
¢ Mantra on Twitter: @mantrainfosec

e Mantra: https://mantrainfosec.com

https://twitter.com/xoreipeip
https://www.linkedin.com/in/bucsayb/
https://twitter.com/mantrainfosec
https://mantrainfosec.com/

MANTRA INFORMATION SECURITY

e Boutique consultancy approach
e Decades of experience and excellence

= Training delivery (Software Reverse Engineering Training)
= Cloud, CI/CD, Kubernetes reviews

= Red Teaming, EASM, Infrastructure testing
= Web application and API assessments
= Reverse-engineering, embedded devices and exploit development

e Full stack consultancy - from finding a bug until it gets fixed

https://mantrainfosec.com

https://mantrainfosec.com/training-sre.html
https://mantrainfosec.com/

SERVER-SIDE CROSS-SITE SCRIPTING

e Thatis a mouthful
e Let'sunfold it abit

CROSS-SITE SCRIPTING

Most well-known and misundertood payload:

CROSS-SITE SCRIPTING

e Type of an injection attack
e Malicious HTML/JavaScript content injected into a page
e Different types including:

= Stored (Persistent)

= Reflected

= DOM Based

e Always gets rendered/executed in the client's browser

ROOT CAUSE OF CROSS-SITE SCRIPTING

e |mproper validation
e Improper sanitization
e |mproper sanitization

e Choose your poison

IMPACT OF CROSS-SITE SCRIPTING

e |[mpact:
= User impersonation
= Account hijacking
= Website defacement
= Phishing attacks

e |t can be underrated because:

= "Trivial" to find
= Easy to misunderstand

e Onethingissure, it affects directly the client (the browser)

JAVASCRIPT

e Purposefully chose the name Server-Side XSS instead of Server-Side JS Injection
e JavaScriptis everywhere:

= Web Applications

= Web Servers - Think

s Desktop Applications - Think

JAVASCRIPT INJECTION

e JSinjection does not only affect the browser anymore
e Improperly handled user-input can lead to:

= XSS in Web Applications

= Remote Command Execution in Web Servers ()

= Remote Command Execution in Desktop Applications ()
e We are not covering these today

SERVER-SIDE CROSS-SITE SCRIPTING

SERVER-SIDE CROSS-SITE SCRIPTING

If XSS affects the client's browser how can it be Server-
Side?

DIFFERENT DELIVERY APPROACHES

e The need to deliver fast, demands new solutions
e These combined with the diverse technology create sloppy implementations
e Think of PDF generation on server side
coded a SW library that creates PDF from text
Docker + Chrome + HTML = PDF
e Which approach is better?
o Which approach is more secure?

DEMO ENVIRONMENT REQUIREMENTS

e Let's see ascenario where:
= Web application running on AWS
= Users need a functionality to export reports in PDF format
= Docker with ECR/ECS/Fargate is used to render the reports
= Other parts of the environment are hidden from the user

HTML 2 PDF

e Straightforward solution is to use a browser to convert HTML to PDF
= |et's get a Docker container that does just this:
o One of many: export-html
= Provides an APl over HTTP
= HTML can be POST'd and PDF is returned
= What could go wrong with it?

https://github.com/bedrockio/export-html

HTML 2 PDF

Cute security note

Export HTML to PDF Service

This is a simple Docker container that runs a JSON API service that allows HTML to be converted to PDF or
PNG/JPG images. This service accomplishes this by using a Chrome headless browser to ensure full rendering

capabilities on par with Google Chrome.

Security Note: This is intended to run as a micro service - do not directly expose to the public internet

HTML 2 PDF

e Must be mentioned, that the note is right!

e Also afew other things to add:
= Consider disabling JavaScript
= Consider running it in a fully isolated/firewalled environment
= Make sure that all input is validated and sanitized

HTML 2 PDF - ISSUE OPENED

Security implications #9
mantrainfosec opened this issue on May 8 - 0 comments

mantrainfosec commented on May 8
Hi,
First of all great repository, the APl makes it a lot easier to use your tool compared to others.

I've noticed that this and similar tools are used by multiple companies to export PDF. Although this is a great and easy way to
implement this functionality, it comes with a certain cost.

Your security note in the README, is quite right, but | believe there should be a bit more to add to it:

You or the implementers should consider disabling JavaScript in full in the headless Chrome.
Input validation/sanitization should be implemented on the service that calls this API

Containers should be fully segregated and firewalled, so they should not be able to access other containers or IPs in
general.

IAM and similar policies should be restricted as much as possible

In case an attacker could inject arbitrary HTML/JS into the headless chrome browser, that would be rendered/executed while
creating the PDF. The attacker could interact with external and internal services in the environment that might lead to huge
issues including cloud account takeover.

- 2,.\)

THE ENVIRONMENT

o Atest environment was repticated built
e Simple steps to achieve it:
= |AM policies and roles added
= VPC, Subnet, Routing table, Internet Gateway added
= Two docker containers created in ECS/Fargate
= Security groups created

TWO CONTAINERS

e To make this more interesting, two docker containers were added
= export-html: to render PDF from HTML
= custom built: vulnerable for +
e Local File Read (LFR): Reads any file from the container's FS
e Server-Side Request Forgery (): Interacts with other services on the network

RENDERING DEMO

HOW DOES THIS WORK?

e HTML content in JSON posted to the API
e The HTML content is rendered in (Headless) Chrome
Output/rendered HTML is sent back to the user in PDF format

e Theserver side has an actual browser and opens webpages
XSS in that webpage =>

XSS OR NOT?

e Cross-Site Scripting only works if JavaScript can be used
e Let's check for JSin the browser

{"html": "<script>document.write('<hl>"'+
(33074-1737) .toString()+'</h1>");</script>"}

XS8$

e Now we know that XSS is possible
e What can we do from JavaScript or HTML?
= |nteract with other services over the network
o SMB interaction to relay/steal hashes
SSRF to attack other services/get internal details
o Port scan the network
o Get cloud related metadata/credentials
= Read local files (SOP dependent)

= Denial of Service (DoS)

@)

SMB INTERACTION

e Only on Windows boxes

e Open SMB share from HTML/S:

e Use Responder on your side (external.IP)

e Domain creds might be popping up - depending on setup

Not in our case, we have Linux containers

LOCAL FILE READ

e Subject to Same Origin Policy (SOP)*

e Works only when payload is written into a file and opened for render
e Check: for URL

o does not count as a file

No Local File Read for us! - at least not from the browser

* https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

DENIAL OF SERVICE

e Overloading the service:
= Huge requests
= Recursive content (iframe in an iframe)
= |nfinite loop/Recursive loop
e It might render it unavailable or result in extra charge for the owner

e We do not plan to cause harm

CLOUD METADATA

e Metadata host:

e This seems to be universal between cloud providers

e Metadata contains instance related data

e |t might include credentials (access tokens)

e Canbe accessover HTTP or an extra header

AWS METADATA

e IMDSvV1 - arequest/response method (old) - can be rendered from browser
e [IMDSv2 - asession-oriented method with extra headers:

o Can't besent from HTML
o Can be sent from JS, but no CORS headers - no render

o Requires the token in header

e This would be interesting for us if the container was running on EC2

GCP/AZURE METADATA

e Metadata host: (metadata.google.internal)
e GCP extra header:
e Azure header:

= No way to add header from HTML

= No CORS headers in response

AWS METADATA ON ECS

e Metadata host:
e To get the juicy data, we would need the container's GUID

e GUID can be found under
e Local File Read is needed to access the file content

PORT SCAN

e Somewhat possible from JavaScript
e Coolresearch on the topic (Nikolai Tschacher):
= https://incolumitas.com/2021/01/10/browser-based-port-scanning/
WebSocket/IMG methods detailed in the article above
e Based on timing, which makes it somewhat unreliable
e Non-existent/firewalled hosts do not send RST

Oldschool ways:
= Check timeout
= Openiniframe if portis HTTP(S)

https://incolumitas.com/2021/01/10/browser-based-port-scanning/

FIX / MITIGATION: CODING

e Lets start from the beggining
e Always do at least of the three:

N validation
= sanitization
= sanitization

e Not just for XSS, any user input qualifies

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.htm

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

FIX / MITIGATION: HIGH LEVEL

. : Do it before implementing something new
= Think through what you are going to implement
= Think of different angles and attack vectors
= How would YOU abuse it?
° &
= Less privileges the better
= Do not share users between separate functions

= Segregated network
m Strict firewall rules

FIX / MITIGATION: HTML 2 PDF

e Reconsider using this technology
e |f the only way forward:
= Consider disabling JavaScript in browser
= Configure the browser as secure as possible
= Consider running it in a fully isolated/firewalled environment
o No network or Internet access
= Render pure HTML with embedded pictures and that is it

e Make sure that all input is validated and sanitized (remember?)

FIX / MITIGATION: LOCAL FILE READ

e Make sure other services do not present risk
e |Local File Read vulnerabilities for example
e List goeson...

...‘.‘...

oo
o-o-ooo.o-o- o5S,
SOOO0000V0 RO OO

css000 0000000000

ees0000000 0 0 0 0

0000000000000 0 0 o

00000000000 0 0 0

000000000000 0 0 o

°

infosec.com

//mantra

https

https://mantrainfosec.com/

