
SERVER-SIDE CROSS-SITE SCRIPTING (XSS)SERVER-SIDE CROSS-SITE SCRIPTING (XSS)

Balázs Bucsay

Founder & CEO of
Mantra Information Security

https://mantrainfosec.com

https://mantrainfosec.com/
https://mantrainfosec.com/

BIO / BALÁZS BUCSAYBIO / BALÁZS BUCSAY
Over two decades of offensive security experience
Started learning assembly when 13 years old
Reverse engineering software and modifying them
15 years of research and consultancy
Previously worked at NCC Group and Vodafone

Certi�cations: OSCE, OSCP, OSWP; Prev: GIAC GPEN, CREST CCT Inf
Frequent speaker on IT-Security conferences:

US - Washington DC, Atlanta, Honolulu
Europe - UK, Belgium, Norway, Austria, Hungary...
APAC - Australia, Singapore, Philippines

BIO / BALÁZS BUCSAYBIO / BALÁZS BUCSAY
Happy to chat! Find me after the talk
Hobbies:

Travelling (been to 75+ countries)
Hiking, kayaking, cycling
IT Security

Love to learn from others

Twitter:
Linkedin:
Mantra on Twitter:
Mantra:

@xoreipeip
https://www.linkedin.com/in/bucsayb/

@mantrainfosec
https://mantrainfosec.com

https://twitter.com/xoreipeip
https://www.linkedin.com/in/bucsayb/
https://twitter.com/mantrainfosec
https://mantrainfosec.com/

MANTRA INFORMATION SECURITYMANTRA INFORMATION SECURITY
Boutique consultancy approach
Decades of experience and excellence

Training delivery ()
Cloud, CI/CD, Kubernetes reviews
Red Teaming, EASM, Infrastructure testing
Web application and API assessments
Reverse-engineering, embedded devices and exploit development
...

Full stack consultancy - from �nding a bug until it gets �xed

Software Reverse Engineering Training

https://mantrainfosec.com

https://mantrainfosec.com/training-sre.html
https://mantrainfosec.com/

SERVER-SIDE CROSS-SITE SCRIPTINGSERVER-SIDE CROSS-SITE SCRIPTING
That is a mouthful
Let's unfold it a bit

CROSS-SITE SCRIPTINGCROSS-SITE SCRIPTING
Most well-known and misundertood payload:

alert(1)

CROSS-SITE SCRIPTINGCROSS-SITE SCRIPTING
Type of an injection attack
Malicious HTML/JavaScript content injected into a page
Different types including:

Stored (Persistent)
Re�ected
DOM Based

Always gets rendered/executed in the client's browser
Always?

ROOT CAUSE OF CROSS-SITE SCRIPTINGROOT CAUSE OF CROSS-SITE SCRIPTING
Improper input validation
Improper input sanitization
Improper output sanitization

Choose your poison

IMPACT OF CROSS-SITE SCRIPTINGIMPACT OF CROSS-SITE SCRIPTING
Impact:

User impersonation
Account hijacking
Website defacement
Phishing attacks
...

It can be underrated because:
"Trivial" to �nd
Easy to misunderstand

One thing is sure, it affects directly the client (the browser)
Or is it?

JAVASCRIPTJAVASCRIPT
Purposefully chose the name Server-Side XSS instead of Server-Side JS Injection
JavaScript is everywhere:

Web Applications
Web Servers - Think NodeJS
Desktop Applications - Think Electron
...

JAVASCRIPT INJECTIONJAVASCRIPT INJECTION
JS injection does not only affect the browser anymore
Improperly handled user-input can lead to:

XSS in Web Applications
Remote Command Execution in Web Servers (NodeJS)
Remote Command Execution in Desktop Applications (Electron)

We are not covering these today

SERVER-SIDE CROSS-SITE SCRIPTINGSERVER-SIDE CROSS-SITE SCRIPTING

If XSS affects the client's browser how can it be Server-
Side?

SERVER-SIDE CROSS-SITE SCRIPTINGSERVER-SIDE CROSS-SITE SCRIPTING

If XSS affects the client's browser how can it be Server-
Side?

Because the browser runs on the server!

DIFFERENT DELIVERY APPROACHESDIFFERENT DELIVERY APPROACHES
The need to deliver fast, demands new solutions
These combined with the diverse technology create sloppy implementations
Think of PDF generation on server side

In the past: coded a SW library that creates PDF from text
Now: Docker + Chrome + HTML = PDF

Which approach is better? Not sure
Which approach is more secure?

Faster pace comes with less testing and lack of security awareness

DEMO ENVIRONMENT REQUIREMENTSDEMO ENVIRONMENT REQUIREMENTS
Let's see a scenario where:

Web application running on AWS
Users need a functionality to export reports in PDF format
Docker with ECR/ECS/Fargate is used to render the reports
Other parts of the environment are hidden from the user

HTML 2 PDFHTML 2 PDF
Straightforward solution is to use a browser to convert HTML to PDF

Let's get a Docker container that does just this:
One of many:

Provides an API over HTTP
HTML can be POST'd and PDF is returned
What could go wrong with it?

export-html

https://github.com/bedrockio/export-html

HTML 2 PDFHTML 2 PDF
Cute security note

HTML 2 PDFHTML 2 PDF
Must be mentioned, that the note is right!
Also a few other things to add:

Consider disabling JavaScript
Consider running it in a fully isolated/�rewalled environment
Make sure that all input is validated and sanitized

Otherwise, what could go wrong?

HTML 2 PDF - ISSUE OPENEDHTML 2 PDF - ISSUE OPENED

THE ENVIRONMENTTHE ENVIRONMENT
A test environment was replicated built
Simple steps to achieve it:

IAM policies and roles added
VPC, Subnet, Routing table, Internet Gateway added
Two docker containers created in ECS/Fargate
Security groups created

TWO CONTAINERSTWO CONTAINERS
To make this more interesting, two docker containers were added

export-html: to render PDF from HTML
custom built: vulnerable for LFR + SSRF

Local File Read (LFR): Reads any �le from the container's FS
Server-Side Request Forgery (SSRF): Interacts with other services on the network

RENDERING DEMORENDERING DEMO

HOW DOES THIS WORK?HOW DOES THIS WORK?
HTML content in JSON posted to the API
The HTML content is rendered in (Headless) Chrome
Output/rendered HTML is sent back to the user in PDF format

The server side has an actual browser and opens webpages
XSS in that webpage => Server-Side XSS

XSS OR NOT?XSS OR NOT?
Cross-Site Scripting only works if JavaScript can be used
Let's check for JS in the browser

{"html": "<script>document.write('<h1>'+
(33074-1737).toString()+'</h1>');</script>"}

XSSXSS
Now we know that XSS is possible
What can we do from JavaScript or HTML?

Interact with other services over the network
SMB interaction to relay/steal hashes
SSRF to attack other services/get internal details
Port scan the network
Get cloud related metadata/credentials

Read local �les (SOP dependent)
Denial of Service (DoS)

SMB INTERACTIONSMB INTERACTION
Only on Windows boxes
Open SMB share from HTML/JS: \\external.IP\test\test
Use Responder on your side (external.IP)
Domain creds might be popping up - depending on setup

Not in our case, we have Linux containers

LOCAL FILE READLOCAL FILE READ
Subject to Same Origin Policy (SOP)*
Works only when payload is written into a �le and opened for render
Check: window.location for URL
about:blank does not count as a �le

No Local File Read for us! - at least not from the browser

* https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

DENIAL OF SERVICEDENIAL OF SERVICE
Overloading the service:

Huge requests
Recursive content (iframe in an iframe)
In�nite loop/Recursive loop

It might render it unavailable or result in extra charge for the owner

We do not plan to cause harm

CLOUD METADATACLOUD METADATA
Metadata host: http://169.254.169.254/
This seems to be universal between cloud providers
Metadata contains instance related data
It might include credentials (access tokens)
Can be access over HTTP with or without an extra header

AWS METADATAAWS METADATA
IMDSv1 - a request/response method (old) - can be rendered from browser
IMDSv2 - a session-oriented method with extra headers:

X-aws-ec2-metadata-token-ttl-seconds (PUT)
Can't be sent from HTML
Can be sent from JS, but no CORS headers - no render

X-aws-ec2-metadata-token (GET)
Requires the token in header

This would be interesting for us if the container was running on EC2

GCP/AZURE METADATAGCP/AZURE METADATA
Metadata host: http://169.254.169.254/ (metadata.google.internal)
GCP extra header: Metadata-Flavour: Google
Azure header: Metadata: true

No way to add header from HTML
No CORS headers in response

AWS METADATA ON ECSAWS METADATA ON ECS
Metadata host: http://169.254.170.2/
To get the juicy data, we would need the container's GUID

http://169.254.170.2/v2/credentials/<GUID>
GUID can be found under /proc/self/environ
Local File Read is needed to access the �le content

PORT SCANPORT SCAN
Somewhat possible from JavaScript
Cool research on the topic (Nikolai Tschacher):

WebSocket/IMG methods detailed in the article above
Based on timing, which makes it somewhat unreliable
Non-existent/�rewalled hosts do not send RST

Oldschool ways:
Check timeout
Open in iframe if port is HTTP(S)

https://incolumitas.com/2021/01/10/browser-based-port-scanning/

https://incolumitas.com/2021/01/10/browser-based-port-scanning/

FIX / MITIGATION: CODINGFIX / MITIGATION: CODING
Lets start from the beggining
Always do at least of the three:

Input validation
Input sanitization
Output sanitization

Not just for XSS, any user input quali�es

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

FIX / MITIGATION: HIGH LEVELFIX / MITIGATION: HIGH LEVEL
Thread model: Do it before implementing something new

Think through what you are going to implement
Think of different angles and attack vectors
How would YOU abuse it?

Least Privilege Principle & Separation of Duties
Less privileges the better
Do not share users between separate functions

Defense in Depth
Segregated network
Strict �rewall rules

FIX / MITIGATION: HTML 2 PDFFIX / MITIGATION: HTML 2 PDF
Reconsider using this technology
If the only way forward:

Consider disabling JavaScript in browser
Con�gure the browser as secure as possible
Consider running it in a fully isolated/�rewalled environment

No network or Internet access
Render pure HTML with embedded pictures and that is it

Make sure that all input is validated and sanitized (remember?)

FIX / MITIGATION: LOCAL FILE READFIX / MITIGATION: LOCAL FILE READ
Make sure other services do not present risk
Local File Read vulnerabilities for example
List goes on...

Q&A

https://mantrainfosec.com

https://mantrainfosec.com/

